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Challenge
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Fig. 1. An illustration of dealing with the building FDD in different ways:
Single-task v.s. Multi-task.
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Fig. 3. Diagram of the proposed AML-FDD framework. At the Adversarial Multi-task Learning (AML) stage, adversarial training and orthogonality constraints
are incorporated to learn the task-specific and task-shared features; the learned features are utilized for FDD classification tasks at the Fault Detection and

Diagnosis (FDD) stage.




Methodology
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Experiment

B System
» An Air Handling Unit (AHU) connects the heating and cooling S
units to the building area, controls the ventilation intake of the Outdoor ?Z: /N Ceadp Return fan Tra
building, and significantly affects the energy consumption of &; - = bl !
heating, cooling, and ventilation and the temperature and — A o : Return
humidity of the supply air. Due to the high intensity of [ ] T ‘ )
operations, AHU is prone to degradation. ] Crladp g hede Supvli’lsyfian &
B Datasets o U Q M& Supply
> We evaluated the proposed AML-FDD framework using two ol The e *“) (* e (psacvmd
datasets from the ERS test facility. T e T

» the ASHRAE research project 1312 (RP-1312)

» the ASHRAE research project 1020 (RP-1020)
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Experiment

® Fault Types

NUMBER OF FAULT CATEGORIES AND CORRESPONDING DATA SIZES FOR EACH TASK (RP-1312)

. . . Categories Second Categories Fault Type Label Summer(Task1)’ Spring(TaskZ)2 Winter(Task3)’
» Four main categories of experi mental Fault-Free - 0 2160 3600 2160
OA Damper Stuck 1 720 1440 720
OA Damper Leak 2 1440 - 1440
faults Controlled Device EA Damper Stu 3 1440 7160 1440
Cooling Coil Valve Stuck 4 2880 2160 1440
Heating Coil Valve Leaking 5 2160 - -
_ - AHU Duct Leaking 6 1440 - -
> RP 1312 17 fau It types Heating Coil Fouling 7 - - 1440
Equipment Heating Coil Reduced Capacity 8 - - 2160
Return Fan complete failure 9 - 720 -
» RP-1020—38 fault types Air filter blockage fault 10 720 1440 -
Return Fan at fixed speed 11 720 - -
Cooling Coil Valve
Control unstable 12 720 ) )
Cooling Coil Yalve 13 _ 720 ]
. Reverse Action
. Expe rl m enta I Set- u p Mixed air damper unstable 14 - 720 -
Controller Mixed air damper unstable 15 ] 720 )
/Cooling Coil Control
1 Sequence of Heating
> Faults were introduced to the ERS testbed o Sootine unabl 16 - 1440 :
Sensor OA temperature sensor bias 17 - 1440 -
|n RP_1312 and RP_]_OZO under three 123 Taking into account the Fault Free condition, there are 10, 11, and 7 fault categories in Summer (Task 1), Spring (Task 2), and Winter
(Task 3), respectively, of RP-1312.
i . TABLE Il
d |ﬁ:erent Seasonal Cond |t|0ns_ NUMBER OF FAULT CATEGORIES AND CORRESPONDING DATA SIZES FOR EACH TASK (RP-1020)
Categories Fault Type Label | Summer(Task1)* | Spring(Task2)’ | Winter(Task3)"
» the FDD task was conducted as a binary . _rault-Free L 5884 1488 2475
Static Pressure Sensor Fault 1 405 1289 2467
. e . Leaking Cooling Coil Valve 2 - 4379 1274
and mUItI-CIaSS CIaSS|f|C3.t|0n taSk’ Unstable Static Pressure Control 3 1367 3751 2066
i Fouling Cooling Coil 4 - 4305 -
I’espectlvely. Leaking Re-circulation Damper 5 - 4435 -
Slipping Fan Belt 6 2597 - 4365
Coil "Capacity” Fault 7 2896 -
8

=..3 Stuck Re-circulation Damper 2210 - 4648
BE B 436 Considering the Fault Free condition, there are 6 fault categories in all three tasks of RP-1020. 8



Experiment

B Baselines

» MT-CNN: A model of convolutional neural networks where only the lookup layer is shared and the other layers are

task-specific private.
» MT-DNN: Contains bag-of-words inputs and multilayer perceptrons with shared hidden layers.
» FS-MTL:This model ignores that some features are task-dependent and cannot be shared.

» SP-MTL.: each task is assigned a private LSTM layer and a shared LSTM layer.

B Model Parameters

» Arandom selection of 10% of the data for the test set
» The remaining 70% of the datasets were employed for training purposes
» The remaining 20% were allocated for validation

» We choose a learning rate of 0.01, lambda is 0.05, and gamma is 0.01.
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Results

® FDD via Binary Classification

» The performance for the three tasks of RP-1312 is different.

» From the two table, it can be seen that multi-task models generally outperformed single-task models. Specifically, the

accuracy value by AML-FDD improved by an average of 4.0% and 9.9% compared to the single task.

» RP-1020 were generally slightly higher than in RP-1312.

» the accuracy values of the three tasks in RP-1312 were relatively consistent.

94 1 =f— Summer (Task1)
Spring(Task2)
) -@- Winter (Task3)

TABLE III

FDD PERFORMANCE VIA BINARY CLASSIFICATION FOR RP-1312

Single Task Model

Multi-task Model

Task LSTM  BiLSTM sLSTM MT-DNN MT-CNN FS-MTL SP-MTL  AML-FDD
Summer(Taskl) 79.5 80.5 82 82.2 83.5 84.5 85.2 85.51+0.1
Spring(Task2) 85.2 86 80.5 84.2 84.5 86.2 84.7 86.21+0.2
Winter(Task3) 81.5 81.7 82.5 85.7 85.5 83.7 86.5 86.8+0.2
average 82.1 82.8 81.7 84.1 84.5 84.8 85.5 86.21+0.1

TABLE 1V
FDD PERFORMANCE VIA BINARY CLASSIFICATION FOR RP-1020
Task Single Task Model Multi-task Model

’ LSTM BiLSTM sLSTM | MT-DNN MT-CNN FS-MTL SP-MTL AML-FDD
Summer(Task1) 78.5 81.3 71.2 77.8 75.4 82.3 84.5 91.8+0.3
Spring(Task2) 80 80.9 71.5 72.8 71.6 78.1 76.9 82.6+0.1
Winter(Task3) 80.5 79.3 72.5 77.5 78.8 85.7 80.6 87.1+0.3
average 79.7 80.5 71.7 76 75.3 82 80.7 87.2+0.3
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Results

®m FDD via Multi-class Classification

» Comparison of Classification Models: The RP-1312 exhibits lower accuracy compared to the binary classification

model due to the increased complexity in reducing redundancy between task-shared and task-specific features in multi-
class tasks.

» Superiority of adversarial networks and orthogonality constraints: Both SP-MTL and AML-FDD demonstrate

higher accuracy over other multi-task models like MT-DNN, MT-CNN, and FS-MTL, indicating that separating task-

shared and task-specific features is beneficial. Additionally, AML-FDD surpasses SP-MTL by 2.6% in accuracy.

TABLE V
FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1312
Task Single Task Model Multi-task Model
’ LSTM BILSTM sLSTM | MT-DNN MT-CNN FS-MTL  SP-MTL  AML-FDD
Summer(Task1) 70.2 66.3 69.2 75.5 74.5 74.7 76 77.6£0.5
Spring(Task2) 78.8 66.8 79.1 81.7 81.5 82.5 83 84.7+0.2
Winter(Task3) 68.8 67.1 77.4 80.7 83.2 83.2 81.2 85.8+0.3
average 72.6 66.7 75.2 79.3 79.8 79.8 80.1 82.7+0.3
TABLE VI
FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1020
Task Single Task Model Multi-task Model
) LSTM BiLSTM sLSTM | MT-DNN MT-CNN FS-MTL SP-MTL AML-FDD
Summer(Task1) 68.9 71.3 65.7 73.4 71.1 75.1 7.7 83.4+0.2
Spring(Task2) 62.4 66 64 73.6 72.9 83.7 80.8 88.1+0.1
=..=' Winter(Task3)  66.8 70.7 69.3 72.1 74.8 83.9 81.4 91.6--0.4
—+ I / \ I ; average 66 73.7 66.3 73 72.9 80.9 80 87.7+0.2 11



Results

B FDD via Multi-class Classification

» Seasonal Variation in Fault Detection: Winter shows the highest accuracy due to a more even distribution of samples

and fewer fault types.In contrast, Summer has a more uneven distribution, and Spring benefits from a larger sample size,

which may provide more information for the model, leading to better performance.

» Winter Season Analysis: Winter has fewer fault types and more normal samples, which leads to higher accuracy in

binary classification due to more balanced labels. However, the multi-class classification accuracy is lower due to the
imbalance in label distribution across fault types.

TABLE V
FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1312
Task Single Task Model Multi-task Model
’ LSTM BILSTM sLSTM | MT-DNN MT-CNN FS-MTL  SP-MTL  AML-FDD
Summer(Task1) 70.2 66.3 69.2 75.5 74.5 74.7 76 77.6£0.5
Spring(Task2) 78.8 66.8 79.1 81.7 81.5 82.5 83 84.7+0.2
Winter(Task3) 68.8 67.1 77.4 80.7 83.2 83.2 81.2 85.8+0.3
average 72.6 66.7 75.2 79.3 79.8 79.8 80.1 82.7+0.3
TABLE VI
FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1020
Task Single Task Model Multi-task Model
) LSTM BiLSTM sLSTM | MT-DNN MT-CNN FS-MTL SP-MTL AML-FDD
Summer(Task1) 68.9 71.3 65.7 73.4 71.1 75.1 7.7 83.4+0.2
Spring(Task2) 62.4 66 64 73.6 72.9 83.7 80.8 88.1+0.1
=..=' Winter(Task3)  66.8 70.7 69.3 72.1 74.8 83.9 81.4 91.6--0.4
—+ I / \ I ; average 66 73.7 66.3 73 72.9 80.9 80 87.7+0.2 12



Results

B FDD via Multi-class Classification

» Data Imbalance in Summer: Summer (Task 1) of

RP-1020 shows a pronounced issue of data imbalance
with a surplus of fault-free samples (label "0"),

causing misclassification of other labels as "0".

» Binary Classification Accuracy in Summer: The

data imbalance contributes to higher binary
classification accuracy for Summer (Task 1) due to the

predominance of fault-free samples.
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(a) Summer (Taskl) of RP-1312 (b) Spring (Task2) of RP-1312 (c) Winter (Task3) of RP-1312

Fig. 6. Confusion Matrices of multi-class classification results by AML-FDD for RP-1312 in the Summer, Spring, and Winter.
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Fig. 7. Confusion Matrices of multi-class classification results by AML-FDD for RP-1020 in the Summer, Spring, and Winter.
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Results

B FDD via Multi-class Classification

» Spring vs. Winter Performance: The presence of two

task-specific fault types in Spring (Task 2) accounts

for the lower multi-class classification performance

compared to Winter (Task 3). However, Spring SEPEE TR B S e Fl L
performs better than Summer due to having more data

- g (a) Summer (Taskl) of RP-1312 (b) Spring (Task2) of RP-1312 (c) Winter (Task3) of RP-1312
for these task-specific faults.

Fig. 6. Confusion Matrices of multi-class classification results by AML-FDD for RP-1312 in the Summer, Spring, and Winter.
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Fig. 7. Confusion Matrices of multi-class classification results by AML-FDD for RP-1020 in the Summer, Spring, and Winter.
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» Uniform Data Distribution in Winter: Winter

exhibits a more uniform data distribution, and the

overlap of fault types across seasons reduces the

number of task-specific features, resulting in higher

quality learned features and thus higher multi-
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