Fault Detection and Diagnosis of Air Handling Units Based On Adversarial Multi-task Learning

1st Jingwen Tan Sun Yat-sen University Zhuhai, China tanjw9@mail2.sysu.edu.cn

2nd Dan Li* Sun Yat-sen University Zhuhai, China lidan26@mail.sysu.edu.cn

3rd Zibin Zheng Sun Yat-sen University Zhuhai, China Zhengzb@mail.sysu.edu.cn

4th See-King Ng National University of Singapore Singapore seekiong@nus.edu.sg

2023.12.1

Background
Challenge
Architecture
Methodolgy
Experiment
Results

Background

Challenge

Lack of Fault Contextualization Environmental Influence Seasonal Data Patterns

Fig. 2. Operating modes of AHU. An economizer set point refers to a predefined condition based on outdoor temperature, a combination of outdoor temperature and humidity, or outdoor enthalpy. When the outdoor temperature (and humidity) exceeds the economizer set point, the outdoor air intake will be limited to the minimum required to meet ventilation standards.

Fig. 1. An illustration of dealing with the building FDD in different ways: Single-task v.s. Multi-task.

Architecture

Fig. 3. Diagram of the proposed AML-FDD framework. At the Adversarial Multi-task Learning (AML) stage, adversarial training and orthogonality constraints are incorporated to learn the task-specific and task-shared features; the learned features are utilized for FDD classification tasks at the Fault Detection and Diagnosis (FDD) stage.

Methodology

Task Classification Loss

The networks are trained to minimize the crossentropy between the predicted and true distributions for all tasks.

$$L_{\text{Task}} = \sum_{k=1}^{K} \alpha_k L\left(\hat{y}^{(k)}, y^{(k)}\right)$$

Orthogonality Constraints Loss

Inspired by other works, orthogonality constraints which penalize redundant potential representations and encourage task-shared and task-specific extractors to encode different aspects of the input are adopted. $L_{\text{diff}} = \sum_{k=1}^{K} \left\| \mathbf{S}^{k^{T}} \mathbf{H}^{k} \right\|_{F}^{2}$

Experiment

System

An Air Handling Unit (AHU) connects the heating and cooling units to the building area, controls the ventilation intake of the building, and significantly affects the energy consumption of heating, cooling, and ventilation and the temperature and humidity of the supply air. Due to the high intensity of operations, AHU is prone to degradation.

Datasets

- We evaluated the proposed AML-FDD framework using two datasets from the ERS test facility.
- ➤ the ASHRAE research project 1312 (RP-1312)
- ➤ the ASHRAE research project 1020 (RP-1020)

Experiment

Fault Types

- Four main categories of experimental faults
- > RP-1312—17 fault types
- ▶ RP-1020—8 fault types

Experimental Set-up

- Faults were introduced to the ERS testbed in RP-1312 and RP-1020 under three different seasonal conditions.
- the FDD task was conducted as a binary and multi-class classification task, respectively.

Categories	Second Categories	Fault Type Label	Summer(Task1) ¹	Spring(Task2) ²	Winter(Task3) ³
Fault-Free	-	0	2160	3600	2160
	OA Damper Stuck	1	720	1440	720
	OA Damper Leak	2	1440	-	1440
Controlled Device	EA Damper Stu	3	1440	2160	1440
	Cooling Coil Valve Stuck	4	2880	2160	1440
	Heating Coil Valve Leaking	5	2160	-	-
	AHU Duct Leaking	6	1440	-	-
	Heating Coil Fouling	7	-	-	1440
Equipment	Heating Coil Reduced Capacity	8	-	-	2160
	Return Fan complete failure	9	-	720	-
	Air filter blockage fault	10	720	1440	-
	Return Fan at fixed speed	11	720	-	-
	Cooling Coil Valve Control unstable	12	720	-	-
Equipment Equipment Heating Coil Fouling Heating Coil Reduced Capacity Return Fan complete failure Air filter blockage fault Return Fan at fixed speed Cooling Coil Valve Control unstable Cooling Coil Valve Reverse Action Mixed air damper unstable	13	-	720	-	
	Mixed air damper unstable	14	-	720	-
CategoriesSecond CatFault-Free-OA DamperOA DamperOA DamperOA DamperControlled DeviceEA DamperCooling Coil VHeating Coil ValAHU Duct IHeating Coil ReduReturn Fan compAir filter blockReturn Fan at fiCooling CoiControl unCooling CoiControl unCooling CoiReverse AMixed air damp//Cooling CoiSensorOA temperature	Mixed air damper unstable /Cooling Coil Control	15	-	720	-
	Sequence of Heating and cooling unstable	16	-	1440	-
Sensor	OA temperature sensor bias	17	-	1440	-

TABLE I NUMBER OF FAULT CATEGORIES AND CORRESPONDING DATA SIZES FOR EACH TASK (RP-1312)

^{1,2,3} Taking into account the Fault Free condition, there are 10, 11, and 7 fault categories in Summer (Task 1), Spring (Task 2), and Winter (Task 3), respectively, of RP-1312.

 TABLE II

 Number of Fault Categories and Corresponding Data Sizes for Each Task (RP-1020)

Categories	Fault Type Label	Summer(Task1) ⁴	Spring(Task2) ⁵	Winter(Task3) ⁶
Fault-Free	0	5884	1488	2475
Static Pressure Sensor Fault	1	405	1289	2467
Leaking Cooling Coil Valve	2	-	4379	1274
Unstable Static Pressure Control	3	1367	3751	2066
Fouling Cooling Coil	4	-	4305	-
Leaking Re-circulation Damper	5	-	4435	-
Slipping Fan Belt	6	2597	-	4365
Coil "Capacity" Fault	7	2896	-	-
Stuck Re-circulation Damper	8	2210	-	4648

^{4,5,6} Considering the Fault Free condition, there are 6 fault categories in all three tasks of RP-1020.

Experiment

A W C A

Baselines

- MT-CNN: A model of convolutional neural networks where only the lookup layer is shared and the other layers are task-specific private.
- > MT-DNN: Contains bag-of-words inputs and multilayer perceptrons with shared hidden layers.
- > FS-MTL: This model ignores that some features are task-dependent and cannot be shared.
- > SP-MTL: each task is assigned a private LSTM layer and a shared LSTM layer.

Model Parameters

- \blacktriangleright A random selection of 10% of the data for the test set
- > The remaining 70% of the datasets were employed for training purposes
- ➤ The remaining 20% were allocated for validation
- \blacktriangleright We choose a learning rate of 0.01, lambda is 0.05, and gamma is 0.01.

FDD via Binary Classification

- \succ The performance for the three tasks of RP-1312 is different.
- From the two table, it can be seen that multi-task models generally outperformed single-task models. Specifically, the accuracy value by AML-FDD improved by an average of 4.0% and 9.9% compared to the single task.
- > RP-1020 were generally slightly higher than in RP-1312.
- \succ the accuracy values of the three tasks in RP-1312 were relatively consistent.

Fig. 5. Evaluation metrics of binary classification via AML-FDD for RP-1312

Task	Single Task Model			Multi-task Model				
IdSK	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD
Summer(Task1)	79.5	80.5	82	82.2	83.5	84.5	85.2	85.5±0.1
Spring(Task2)	85.2	86	80.5	84.2	84.5	86.2	84.7	$86.2 {\pm} 0.2$
Winter(Task3)	81.5	81.7	82.5	85.7	85.5	83.7	86.5	86.8±0.2
average	82.1	82.8	81.7	84.1	84.5	84.8	<u>85.5</u>	$86.2{\pm}0.1$

TABLE III FDD PERFORMANCE VIA BINARY CLASSIFICATION FOR RP-1312

 TABLE IV

 FDD PERFORMANCE VIA BINARY CLASSIFICATION FOR RP-1020

Tack	Single Task Model			Multi-task Model					
IdSK	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD	
Summer(Task1)	78.5	81.3	71.2	77.8	75.4	82.3	<u>84.5</u>	91.8±0.3	
Spring(Task2)	80	80.9	71.5	72.8	71.6	78.1	76.9	82.6±0.1	
Winter(Task3)	80.5	79.3	72.5	77.5	78.8	85.7	80.6	87.1±0.3	
average	79.7	80.5	71.7	76	75.3	82	80.7	87.2±0.3	

FDD via Multi-class Classification

Comparison of Classification Models: The RP-1312 exhibits lower accuracy compared to the binary classification

model due to the increased complexity in reducing redundancy between task-shared and task-specific features in multiclass tasks.

Superiority of adversarial networks and orthogonality constraints: Both SP-MTL and AML-FDD demonstrate higher accuracy over other multi-task models like MT-DNN, MT-CNN, and FS-MTL, indicating that separating taskshared and task-specific features is beneficial. Additionally, AML-FDD surpasses SP-MTL by 2.6% in accuracy.

Task	Single Task Model			Multi-task Model				
IdSK	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD
Summer(Task1)	70.2	66.3	69.2	75.5	74.5	74.7	<u>76</u>	77.6±0.5
Spring(Task2)	78.8	66.8	79.1	81.7	81.5	82.5	83	84.7±0.2
Winter(Task3)	68.8	67.1	77.4	80.7	83.2	83.2	81.2	85.8±0.3
average	72.6	66.7	75.2	79.3	79.8	79.8	80.1	82.7±0.3

 TABLE V

 FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1312

TABLE VI		
FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR	RP-10)20

Tack	Single Task Model			Multi-task Model				
Task	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD
Summer(Task1)	68.9	71.3	65.7	73.4	71.1	75.1	77.7	83.4±0.2
Spring(Task2)	62.4	66	64	73.6	72.9	83.7	80.8	88.1±0.1
Winter(Task3)	66.8	70.7	69.3	72.1	74.8	83.9	81.4	91.6±0.4
average	66	73.7	66.3	73	72.9	80.9	80	87.7±0.2

FDD via Multi-class Classification

- Seasonal Variation in Fault Detection: Winter shows the highest accuracy due to a more even distribution of samples and fewer fault types. In contrast, Summer has a more uneven distribution, and Spring benefits from a larger sample size, which may provide more information for the model, leading to better performance.
- Winter Season Analysis: Winter has fewer fault types and more normal samples, which leads to higher accuracy in binary classification due to more balanced labels. However, the multi-class classification accuracy is lower due to the imbalance in label distribution across fault types.

Task	Single Task Model			Multi-task Model				
Idsk	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD
Summer(Task1)	70.2	66.3	69.2	75.5	74.5	74.7	<u>76</u>	77.6±0.5
Spring(Task2)	78.8	66.8	79.1	81.7	81.5	82.5	83	84.7±0.2
Winter(Task3)	68.8	67.1	77.4	80.7	83.2	83.2	81.2	85.8±0.3
average	72.6	66.7	75.2	79.3	79.8	79.8	80.1	82.7±0.3

 TABLE V

 FDD PERFORMANCE VIA MULTI-CLASS CLASSIFICATION FOR RP-1312

	TABLE VI		
FDD PERFORMANCE VIA	MULTI-CLASS C	LASSIFICATION FOR	RRP-1020

Tack	Single Task Model			Multi-task Model				
Task	LSTM	BiLSTM	sLSTM	MT-DNN	MT-CNN	FS-MTL	SP-MTL	AML-FDD
Summer(Task1)	68.9	71.3	65.7	73.4	71.1	75.1	77.7	83.4±0.2
Spring(Task2)	62.4	66	64	73.6	72.9	83.7	80.8	88.1±0.1
Winter(Task3)	66.8	70.7	69.3	72.1	74.8	83.9	81.4	91.6±0.4
average	66	73.7	66.3	73	72.9	80.9	80	87.7±0.2

FDD via Multi-class Classification

- Data Imbalance in Summer: Summer (Task 1) of RP-1020 shows a pronounced issue of data imbalance with a surplus of fault-free samples (label "0"), causing misclassification of other labels as "0".
- Binary Classification Accuracy in Summer: The data imbalance contributes to higher binary classification accuracy for Summer (Task 1) due to the predominance of fault-free samples.

Fig. 6. Confusion Matrices of multi-class classification results by AML-FDD for RP-1312 in the Summer, Spring, and Winter.

(a) Summer (Task1) of RP-1020

(b) Spring (Task2) of RP-1020

(c) Winter (Task3) of RP-1020

Fig. 7. Confusion Matrices of multi-class classification results by AML-FDD for RP-1020 in the Summer, Spring, and Winter.

FDD via Multi-class Classification

- Spring vs. Winter Performance: The presence of two task-specific fault types in Spring (Task 2) accounts for the lower multi-class classification performance compared to Winter (Task 3). However, Spring performs better than Summer due to having more data for these task-specific faults.
- Uniform Data Distribution in Winter: Winter
 exhibits a more uniform data distribution, and the
 overlap of fault types across seasons reduces the
 number of task-specific features, resulting in higher
 quality learned features and thus higher multi classification accuracy.

Thank You!

