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The 4th Industrial Revolution
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The Internet of Things

We have machines that collect, process, and send information to other machines
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The BigBang of Digital Data
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IoT

J.Gama Current Trends August 2022 7 / 53



Social Media
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The Value of Data ...
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A World in Movement

The new characteristics of data:
Time and space: The objects of analysis exist in time and space.
Often, they are able to move.
Dynamic environment: The objects exist in a dynamic and evolving
environment.
Information processing capability: The objects have limited
information processing capabilities
Locality: The objects know only their local spatio-temporal
environment;
Distributed Environment: Objects will be able to exchange
information with other objects.

Main Goal:
Real-Time Analysis: decision models have to evolve in
correspondence with the evolving environment.
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Data Streams

Data Streams: Continuous flow of data generated at high-speed in
dynamic, time-changing environments.
We need to maintain decision models in real time.
Learning algorithms must be capable of:

incorporating new information at the speed data arrives;

detecting changes and adapting the decision models to the most
recent information.

forgetting outdated information;

Unbounded training sets, dynamic models.
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The Context

Real-time failure detection and explanation.

Predictive Maintenance, Adversarial Autoencoders and Explainability M Silva, B Veloso, J Gama, ECMLPKDD 2023
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The Air Compressor Unity
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The Air Compressor Unity Sensors
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The Air Compressor Unity Data
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The Fault Detection Layer

The Fault Detection layer is based on a LSTM-AE network trained
with normal data. The process is unsupervised. 1

Each observation is passed through the LSTM-AE and the
reconstruction error is computed: re =

P
i (xi � x̂i )2

High extreme values of the reconstruction error (re) is a potential
indicator of failures.

1
S. Maleki, S. Maleki, and N. R. Jennings, “Unsupervised anomaly detection with

LSTM-AE using statistical data-filtering,” Applied Soft Computing, 2021.
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The Neural-Symbolic Explainer
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The Anomaly Explanation Layer

The Anomaly Explanation Layer has two main components:

An online regression rules learning system, based on AMRules.
Learns a predictive model y = f (X ), where y is the reconstruction
error, and X are the input features of the LSTM-AE.

A sample strategy based on Chebyshev inequality: focusing on the
examples with high reconstruction error, meaning high probability of
being a failure.
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Regression Rules

Conditions

Consequence

A rule is an implication of the form
Antecedent ) Consequent

The Antecedent is a conjunction of conditions
based on attribute values.

If all the conditions are true, a prediction is made
based on Consequent (L).
Consequent contains the su�cient statistics to:a

expand a rule,
make predictions,
detect changes,

a
J. Duarte, J. Gama, A. Bifet: Adaptive Model Rules From

High-Speed Data Streams. ACM Trans. Knowl. Discov. Data;

2016
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Regression Rules: AMRules

One-pass algorithm: create,
expand, and delete rules online

Rule expansion: select the literal
that most reduce variance of the
target

Uses the Hoe↵ding bound to
decide how many observations
are required to create/expand a
rule

Hoe↵ding bound
✏ =

p
R2ln(1/�)/(2n)

Expand when
�1st/�2nd < 1� ✏

Evict rule when P-H signals an
alarm

Input: S: Stream of examples
begin

R  {}, D  0
foreach (X , y) 2 S do

foreach Rule r 2 R do

if ¬IsAnomaly(X , r)
then

if PHTest(errorr ,
�) then

Remove the
rule from R

end

else

Update
su�cient
statistics Lr

ExpandRule(r)
end

end

end

if S(X ) = ; then
Update LD

ExpandRule(D)
if D expanded then

R R [ D
D  0

end

end

end

return (R, LD)
end

Algorithm 1: Training AMRules
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Rule sets

D
e
f
a
u
l
t

Rule 1 Rule 2 Rule r...

...

There are two types of rule sets: unordered and ordered.

The support Su(X ) of an unordered rule set given X is the set of
rules that cover X .

The support So(X ) of an ordered rule set is the first rule of Su(X ).

Given X , only the rules Rl 2 S(X ) are used for training/testing. The
default rule is used if S(X ) = ;.
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Chebyshev inequality

Let Y be a random variable with finite expected value and finite non-zero
variance. Then for any real number t > 0:

P(|y � ȳ | � t ⇥ �)  1

t2

The probability that an observation is far from the mean is more than
t ⇥ � is less than 1

t2

This probability is high for observations near the mean, and low for
the observations far away from the mean.

Those with low probability are the interesting cases: the rare cases
-the failures

2.

2
E. Aminian, R. P. Ribeiro, J. Gama: Chebyshev approaches for imbalanced data

streams regression models. Data Min. Knowl. Discov. 2021
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Chebyshev Over-sampling

For each example:

the example is presented exactly K =
l
|y�y |
�

m
.

K has greater values for the rare cases.
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Local Model - 1

Example 1: Air leak failure

Sample 4089 re=2941.77 2/21/2021 15:48

Rule 0: B6_H1 > 25663.70

This is a failure on the control system of the APU, due to a malfunction of
a pneumatic control valve the system opens the escape valves (H1) when
the compressor is trying to fill the tanks.
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Local Model - 2

Example 2: Oil leak failure

Sample 5428 re=1124.203 3/10/2021 21:49

Rule 0: dig7 > 2258.00

This is a severe failure due to oil leak. The train driver did not receive any
alarm to return to maintenance and the motor seized.
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Global Model

Rules related with oil leak

Rule 0: If dig7 > 2258.0 Then 219.2

Rule 1: If dig7 > 2187.0 Then 42.9

Rules air leak located after the pneumatic control panel

Rule 2: If B1_TP3 > 7345.6 and B5_MC > 1925.7 Then 1.8

Rule 3: If dig8 > 251.0 Then 2.4

Rule 4: If B6_TP3 < 5635.1 Then 2.5

Rule 5: If B2_H1 > 378.1 Then 1.9
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Lessons Learned

The Neural-Symbolic Explainer (NSE) is the first explainer specifically
designed for explaining anomalies.

NSE uses two layers:
The Detection layer is based on state-of-the-art black-box anomaly
detection model: LSTM-AE. Unsupervised learning to detect abnormal
observations.
The Explanation layer is based on a transparent model: regression
rules. It learns a mapping from the input features to the reconstruction
error of the LSTM-AE. Supervised learning to model the LSTM-AE.
Both layers run online and in parallel. For each observation, the system
produces a classification regarding whether it is faulty and the why of
the LSTM-AE prediction.
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Motivation

Hyperparameter self-tuning for data streams; Veloso, Gama, et al., Inf. Fusion,

2021

Hyper-parameter optimization is the problem of choosing a set of
optimal hyper-parameters values of a learning algorithm for a specific
dataset 3.

Stream-based algorithms have several parameters that requires a
tuning process

Typically, these algorithms are tuned using a initial training step to
adjust the model parameters

The optimal values of the hyper-parameters evolve over time!

3
A hyper-parameter is a parameter used to control the learning process.
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Research Question

Given
A data stream S
A learning algorithm A with hyper-parameters p1, . . . , pn
A loss function L

Find:
the set of hyper-parameter values that minimize the loss function
Adapting when concept drift is detected

Our approach explores the Nelder & Mead algorithm for function
minimisation.
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The Nelder & Mead Algorithm

Optimization algorithm to find a minimum of a function

Use a simplex with k vertices, where k = 1 + number of parameters
of the function to minimize

Each vertice corresponds to an instantiation of the hyper-parameters

Sort the di↵erent model configurations by the evaluation metric

Apply Nelder-Mead Operators to obtain the updated parameters and
substitute the Worst Model by the best configuration
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Nelder & Mead Algorithm

The vertices are ordered by the evaluation metric:

best (B),

good (G), which is the closest to the best vertex,

worst (W).

For each Nelder-Mead operation, it is necessary to compute an additional
set of vertexes:

midpoint (M),

reflection (R),

expansion (E),

contraction (C) and

shrinkage (S)

and verify if the calculated vertices belong to the search space.
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SPT - Nelder & Mead

Self Parameter Tuning Algorithm
Based on the Nelder-Mead optimisation algorithm
Adapted for data streams
Is a wrapper over a learning algorithm

How to estimate the error of a Machine Learning algorithm?
Prequential estimation
Sample size estimation

Explore di↵erent configurations
Parallel computing
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Exploration-Deployment Phases
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Sample Size Estimation

How many predictions are needed for a fair performance estimation?

How to select the appropriate moment to apply the Nelder-Mead
operators?

For each model we need to estimate performance for example,
estimate the error of a configuration to calculate the sample size:

Ssize = 16�2

(1��)2 , where Ssize is the sample size, � is the standard

deviation of the metric and � = 95% is the confidence level
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Exploration-Deployment Phases
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Experimental Setup

The SPT approach is compared against the
default hyper-parameter initialisation,
the grid search algorithm.

Learning task:
Classification
Recommendation

We use prequential error estimation for measuring performance.
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Results - Classification

Algorithm: EFDT (Extremely Fast Decision Trees)
C Manapragada, GI Webb, M Salehi

ACM SIGKDD International Conference on Knowledge, 2018

Parameters:
Grace Period Tie threshold

Default 200 0.05
Grid [50, 450] incr. 40 [0.01, 0.1] incr. 0.01

Data set: Electricity, Avila, SEA, Credit

Evaluation protocol: Prequential

Evaluation metrics: Error Rate
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Results - Classification

Table: Algorithms – Accuracy (%)

Data set
SPT Grid Search Default Parameters

Avila 60.9 (1.00x) 60.8 (0.99x) 56.1 (0.92x)
Credit 80.4 (1.00x) 80.9 (1.01x) 80.0 (0.99x)
Electricity 89.8 (1.00x) 91.9 (1.02x) 82.2 (0.92x)
SEA 88.2 (1.00x) 88.1 (0.99x) 86.6 (0.98x)
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Results - Classification

Table: Algorithms – Runtime (ms)

Data set
SPT Grid Search Default Parameters

Avila 5636.07 (1.00x) 38 378.40 (6.80x) 389.07 (0.07x)
Credit 10 991.7 (1.00x) 72 698.10 (6.61x) 585.10 (0.05x)
Electricity 14 931.67 (1.00x) 52 702.60 (3.53x) 491.00 (0.03x)
SEA 7377.90 (1.00x) 25 806.57 (3.50x) 314.43 (0.04x)
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Critical Di↵erence Diagram: Classification
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Hyperparameter Tuning for Recommendation Systems

Hyper-parameter Optimization for Latent Spaces; Veloso & Gama, et al,

ECML/PKDD 2021

Problem: Recommending items to user using matrix faxtorization

use streaming data to train and validate model using prequential
protocol

Initial Setup: simple embedding model

J.Gama Current Trends August 2022 46 / 53



Hyperparameter Tuning for Recommendation Systems

User/Features/Items Graph
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Experimental Results
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Lessons Learned

Sound method for hyper-parameter tuning of stream-based classifiers

Fast convergence

Outperform the baseline methods
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Current Trends and Open Issues

Network Data

Deep models for data streams

Evolving Feature Spaces: sensor networks

Structured Output Prediction: predicting vectors, trees, graphs, ...

Open World Machine Learning: novelty detection, open set
recognition

. . .
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Conclusions

Learning from Data Streams: An existential pleasure!

Thank you!
Thanks to my collaborators:

Bruno Veloso

Rita P. Ribeiro

Saulo Mastelini

Shazia Tabassum

Narges Davari

and Projects FailStopper (FCT), Explaining Predictive Maintenance
(CHIST-ERA)
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