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Introduction

Spectral clustering is a modern, powerful clustering approach. It
uses the eigenvectors of a normalized graph Laplacian for
embedding the data into a low-dimensional space for easy
clustering.

However, it is well known to face two major challenges:
• scalability (speed and memory),
• out of sample extension.

We present a memory and speed efficient spectral clustering
algorithm in the setting of cosine similarity that only uses the
following efficient linear algebra operations:
• elementwise manipulation
• matrix-vector multiplication
• low-rank SVD
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A spectral clustering algorithm
There are different formulations of spectral clustering; here we
present the version by Ng, Jordan and Weiss (2001).
Input: Data matrix X ∈ Rn×d , # clusters k , scale parameter σ
Output: Clusters C1, . . . ,Ck

1: Construct a pairwise similarities matrix

W = (wij), wij = e−∥xi−xj∥2/(2σ2), i ̸= j

2: Find the row sums of W and use them to define a diagonal
(degree) matrix D = diag(W1). Let W̃ = D−1/2WD−1/2.

3: Find the k largest eigenvectors v1, . . . ,vk of W̃ and use them to
form an embedding matrix

X 7→ V = [v1 . . . vk ] ∈ Rn×k .

4: Apply k -means to group the rows of V (after being normalized
to have unit length) into k clusters.
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A demonstration
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Computational challenges

Spectral clustering is flexible, accurate and powerful, and has been
successfully applied to tasks such as image segmentation,
documents clustering and social community detection.

However, it is computationally intensive when being applied to
large data sets.
• Memory requirement: O(n2)
• Computational cost:

(a) Construction of W: O(n2d)
(b) Decomposition of W: O(n3)

Consequently, there has been a lot of work on making it scalable in
time and/or memory to large data sets.
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Speed scalability (ICPR18’)

Given (low-dimensional or row-sparse) data X ∈ Rn×d with
L2-normalized rows, the cosine similarity matrix is

W = XXT − I.

First, we can compute the degree matrix D directly from X (without
needing to construct W):

D = diag(W1) = diag((XXT − I)1) = diag(X(XT 1)− 1n).

Next, we write

W̃ = D−1/2(XXT − I)D−1/2 = X̃X̃T − D−1, X̃ = D−1/2X.

Finally, after removing a small fraction (α) of low-degree points (in
order to make D−1 nearly constant diagonal), we use the left
singular vectors of X̃ to approximate the eigenvectors Ũ of W̃.
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Demonstration: Diagonal entries of D−1 on a large data set (20
newsgroups)
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The small fraction of points in red have relatively lowest degrees,
typically being outliers. They are discarded so that the reduced D−1

matrix is nearly constant diagonal (needed by the approximation).
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Memory scalability
Suppose we encounter
• a massive data set, X = [x1,x2, . . . ,xn]

T ∈ Rn×d , that is too large
to be fully loaded into computer memory, but we have access
to small batches of the data through sampling, or
• an online data set that arrives sequentially, one point at a time.

In both settings, we would like to perform spectral clustering with
the cosine similarity on the whole data set.

We address the memory challenge in the following steps:
1 We first develop a base algorithm using only a single batch of

data to learn the nonlinear embedding and clustering rule.

2 We then present an incremental learning procedure to
continuously refine them as more batches of data are drawn.

3 Lastly, we explain how to extend both the nonlinear
embedding and clustering rule learned on the training data to
the rest of the data in X, as they gradually become available.
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Single batch learning
Assume a small batch of data of size s ≪ n, denoted Xs ∈ Rs×d ,
that has become available through sampling. We would like to take
advantage of the computing procedure developed in previous work
on the speed scalability of spectral clustering with cosine similarity.

The following equation establishes the bridge between the full data
X and the sample Xs:

X̃T X̃ = XT D−1X =
n∑

i=1

1
di

xixT
i ≈

n
s

s∑
i=1

1
di

xixT
i =

n
s

X̃T
s X̃s,

where X̃s = D−1/2
s Xs and Ds represent the restrictions of X̃ and D to

the sample Xs, respectively:

Ds = diag(ds), ds = Xs(XT 1)− 1s ≈
n
s

Xs(XT
s 1s)− 1s.
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The previous equation, X̃T X̃ = n
s X̃T

s X̃s, allows us to use the rank-k
SVD of the sample,

X̃s ≈ ŨsΣ̃sṼT
s ,

to estimate the nonlinear embedding used in the speed-scalable
spectral clustering algorithm (ICPR18’), i.e.,

Y := Ũ = X̃
(

ṼΣ̃
−1)

←− ṼṼT ≈ ṼsṼT
s and Σ̃ ≈

√
n
s
Σ̃s

and apply it to the batch data Xs ∈ Rs×d as follows:

Ys := X̃s

(
ṼΣ̃

−1)
≈ X̃sṼs

(√
n
s
Σ̃s

)−1

=

√
s
n

X̃sṼsΣ̃
−1
s ∈ Rs×k .

We then perform k -means clustering in the Ys space.
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Incremental learning

The embedding obtained on the initial batch of data can be refined
by using more samples.

Now, consider a second batch of data Xt that is independently
sampled from the population, and let the combined sample be

Xs+t =

[
Xs
Xt

]
∈ R(s+t)×d .

By the same reasoning,

X̃T X̃ ≈ n
s + t

X̃T
s+t X̃s+t .

However, we will not compute the SVD of X̃s+t directly as there is a
more efficient way of estimate the right singular vectors Ṽ of X̃.
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Write

X̃T
s+t X̃s+t =

[
X̃T

s X̃T
t

] [X̃s

X̃t

]
= X̃T

s X̃s + X̃T
t X̃t .

Using the rank-k SVD of X̃s (which has already been obtained
earlier), we have the following approximation

X̃T
s+t X̃s+t ≈ ṼsΣ̃

2
sṼT

s + X̃T
t X̃t =

[
ṼsΣ̃s X̃T

t

]
︸ ︷︷ ︸

X̃T
k,t

[
Σ̃sṼT

s

X̃t

]
︸ ︷︷ ︸

X̃k,t

= X̃T
k ,t X̃k ,t

We can thus use the rank-k SVD of X̃k ,t ∈ R(k+t)×d (which is smaller
in size than X̃s+t ∈ R(s+t)×d ),

X̃k ,t ≈ Ũk ,t Σ̃k ,t ṼT
k ,t

to estimate Ṽs+t , Σ̃s+t of X̃s+t and embed Xt accordingly:

Yt :=

√
s + t

n
X̃t Ṽs+t Σ̃

−1
s+t ≈

√
s + t

n
X̃t Ṽk ,t Σ̃

−1
k ,t .
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The stopping criterion
Starting with an initial size s and fixing a step size t , we can iterate
the above learning process:

s ←− s + t , Ṽs ←− Ṽs+t

Convergence is determined based on Grassmannian metric:

gs =
∥∥∥Ṽs+t ṼT

s+t − ṼsṼT
s

∥∥∥
F
=

√
2k − 2

∥∥∥ṼT
s+t Ṽs

∥∥∥2

F
=

√√√√2
k∑

j=1

sin2 θj ,

where 0 ≤ θ1 ≤ · · · ≤ θk ≤ π
2 are the principal angles between the

column spaces of Ṽs+t and Ṽs.

Empirically, we set s such that all θj ≤ θ0, i.e.,

gs <

√
2 · k · sin2 θ0 =

√
2k sin θ0.
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Out of sample extension

Any new point, say x0 ∈ Rd , is embedded as follows:

y0 =

√
s
n

(
d−1/2

0 xT
0

)
ṼsΣ̃

−1
s ∈ Rk ,

where

d0 = xT
0

n∑
i=1

xi − 1 ≈ n
s

xT
0 (X

T
s 1s)− 1.

We then assign y0 to the closest centroids in embedding space.
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Experimental study

We conduct experiments on the following benchmark datasets to
evaluate the performance of our algorithm - Fast, incremental
spectral clustering (FISC), in terms of clustering accuracy and CPU
time.

Data sets n p k
usps 9,298 256 10
pendigit 10,992 16 10
mnist 70,000 184 10
20news 18,768 55,570 20
protein 24,387 357 3
covtype 581,012 54 7

All experiments were conducted with MATLAB R2021b on a
desktop computer with 32 GB of RAM and a CPU with 4 cores.

G. Chen (Hope College) Fast incremental spectral clustering IncrLearn 2023 15 / 18



G. Chen (Hope College) Fast incremental spectral clustering IncrLearn 2023 16 / 18



G. Chen (Hope College) Fast incremental spectral clustering IncrLearn 2023 17 / 18



Thank you for your attention!
Conclusions: We proposed a memory-efficient spectral clustering
algorithm that uses small batches of data to effectively learn
spectral embedding and clustering maps, as well as the
out-of-sample extensions.

In particular, we introduced an incremental procedure that
monitors the Grassmannian distances between consecutive
iterations to check for convergence.

Future work:
• Statistical analysis of the sampling procedure
• Extension to other kinds of similarity such as Gaussian

Acknowledgement: This was joint work with Ran Li (my former
graduate student at San José State University, who now works at
Wells Fargo).
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