|
|
Incremental Classification and Clustering, Concept Drift,
In Conjunction with 24th IEEE International Conference on Data Mining - ICDM 2024 Dec. 9-12, 2024, Abu Dhabi, UAE
The development of dynamic information analysis methods, like incremental classification/clustering, concept drift management and novelty detection techniques, is becoming a central concern in a bunch of applications whose main goal is to deal with information which is varying over time or with information flows that can oversize memory storage or computation capacity. These applications relate themselves to very various and highly strategic domains, including web mining, social network analysis, adaptive information retrieval, anomaly or intrusion detection, process control and management recommender systems, technological and scientific survey, and even genomic information analysis, in bioinformatics. The term “incremental” is often associated to the terms evolutionary, adaptive, interactive, on-line, or batch. Most of the learning methods were initially defined in a non-incremental way. However, in each of these families, were initiated incremental methods making it possible to consider the temporal component of a data flow or to achieve learning on huge/fast datasets in a tractable way. In a more general way incremental classification/clustering algorithms and novelty detection approaches are subjected to the following constraints:
Incremental learning applications relate themselves to very various and highly strategic domains, including web mining, social network analysis, adaptive information retrieval, anomaly or intrusion detection, process control and management recommender systems, technological and scientific survey, and even genomic information analysis, in bioinformatics. This workshop aims to offer a meeting opportunity for academics and industry-related researchers, belonging to the various communities of Computational Intelligence, Machine Learning, Experimental Design, Data Mining and Big/Fast Data Management to discuss new areas of incremental classification, concept drift management and novelty detection and on their application to analysis of time varying information and huge dataset of various natures. Another important aim of the workshop is to bridge the gap between data acquisition or experimentation and model building. Through an exhaustive coverage of the incremental learning area workshop will provide fruitful exchanges between plenaries, contributors and workshop attendees. The emerging big/fast data context will be taken into consideration in the workshop. The set of proposed incremental techniques includes, but is not limited to:
The list of application domain is includes, but it is not limited to:
|
Online user: 2 | Privacy |